New 3-D printing algorithms speed production, reduce waste

New software algorithms have been shown to significantly reduce the time and material needed to produce objects with 3-D printers.

Because the printers create objects layer-by-layer from the bottom up, this poses a challenge when printing overhanging or protruding features like a figure's outstretched arms. They must be formed using supporting structures - which are later removed - adding time and material to the process.

Now, two software algorithms have been created to address the problem. Researchers from Purdue University have demonstrated one approach that has been shown to reduce printing time by up to 30 percent and the quantity of support material by as much as 65 percent.

Such improvements are likely to result in lower overall printing costs, said Bedrich Benes, a Purdue associate professor of computer graphics.

Two research papers detailing the new algorithms have been published in the journal Computer Graphics Forum. One paper was authored by Purdue doctoral students Juraj Vanek and Jorge Galicia; Benes; and Adobe researchers Radomir Mech, Nathan Carr, Ondrej Stava and Gavin Miller. Vanek is now working at Samsung USA. Stava earned a doctorate in computer graphics technology from Purdue.

Read more about the research, including abstracts of the two research papers.

Watch the research video that illustrates how the algorithms work: